Источник Сергей Черкасов, POLITRUSSIA , politrussia.com
Сергей Черкасов, POLITRUSSIA , politrussia.com 28.11.2015 11:32
Оглавление
Будущее России: термоядерные реакторы и лунные базы
Станет ли Россия лидером в термоядерных технологиях?
Будущее России: термоядерные реакторы и лунные базы
28.11.2015 11:32
Продолжение о ближайшем будущем термоядерных реакторов. Думаю, те дети, которые сегодня только учатся ползать, достигнут осмысленного возраста, чтобы восхищенно смотреть трансляции с первых запусков ИТЭР. А сегодня мы поговорим о топливе, что требуется для термоядерных реакторов, футуристическом будущем России и нашей лунной программе.
Какая связь? Давайте разбираться.
Вспомним
В термоядерном реакторе происходит реакция синтеза, т.е. легкие атомные ядра в результате нагрева разгоняются и соединяются в более тяжелое ядро атома. Во время соединения высвобождается море энергии, ради которой все и затевается.
В задаче конструирования термоядерного реактора есть множество сложностей, однако они решаются. Во Франции совместными силами нескольких стран, в том числе и России, уже приступили к строительству упомянутого ИТЭР. Но о нем я уже писал.
Одна из сложностей промышленного запуска термоядерного реактора — это топливо. Планируется использовать различные варианты.
Дейтерий + тритий
Это самый легкий вариант с точки зрения обеспечения протекания реакции. Дейтерий — это тяжелый водород. Добыть его не проблема. Только в воде его десятки миллиардов тонн. Берем воду. Получаем из нее тяжелую воду, а затем уже дейтерий. Его производство на земле в настоящий момент — десятки тысяч тонн в год. Мы это умеем.
С тритием сложнее. Тритий — это сверхтяжелый водород. Он образуется в высоких слоях атмосферы при соударении частиц космического излучения с ядрами атомов. Как вы понимаете, его там образуется совсем не много, и ловить его в высоте не представляется возможным.
Поэтому тритий производят на земле на атомных реакторах. Представляете, всего с 1955 года по 1999 год, например в США, было получено 225 кг.
Наши реакторы этим тоже умеют заниматься. Стоит один килограмм этой радости почти 2 миллиарда рублей. Отличные вложения? Да не тут-то было.
Проблема тут еще в том, что период полураспада трития —12 с небольшим лет. Это значит, что через 12 лет от 1 кг. трития останется всего полкило. Не самый лучший способ хранить свои деньги. Только на один запуск ИТЭР понадобится 3 кг. Для запуска термоядерного реактора следующего поколения DEMO — 4-10 кг. А в мире сейчас имеется всего 18 кг. этого добра.
Да, и спешу обрадовать: рабочий термоядерный реактор с электростанцией, вырабатывающей гигаватты электричества, будет потреблять на каждый этот самый гигаватт*год 56 кг (!) трития.
Где столько взять? Да, термоядерная энергетика недешевое занятие.
Изящное решение
Уже термоядерная установка DEMO должна будет вырабатывать тритий для своих потребностей самостоятельно и даже больше —для других реакторов. Собственно это одно из предназначений DEMO — доказать, что тритием реактор может обеспечивать себя сам и производить излишки. Как же так?
Во время термоядерного синтеза из дейтерия и трития получается ядро гелия и высокоэнергетический нейтрон. Этот самый нейтрон, мчась быстрее ветра, должен покинуть электромагнитную камеру и стукнуться о метровую оболочку из лития. При столкновении нейтрона и ядра лития и появится тритий.
Ну а если не будет?
Если тритий не получится вырабатывать в больших количествах, чем это нужно самой станции? Если объем выработки будет очень мал? Термоядерная станция — это ведь не волшебная палочка: одну построили и все, проблема энергопотребления решена. Их нужно будет строить много по всей планете.
Однако, не тритием единым сыты, можно вместо него использовать гелий-3.
Дейтерий + гелий-3
Крайне сложная, на пределе возможного реакция. А все из-за невообразимо высоких температур плазмы, которых нужно достичь. Но кто сказал, что будет легко?
На выходе, при соединении атомов дейтерия и Гелия 3 получается гелий 4, протон и 18,4 МэВ.
Вопрос с дейтерием мы разобрали. А вот с Гелием 3 проблемы. В природе он находится в мантии, он там еще от сотворения земли завалялся. В атмосферу попадает через вулканы и всякие разломы. Из мантии мы добывать пока ничего не умеем, а в атмосфере Гелия 3 настолько мало, что гиблая это задача. Приходится получать его искусственно, например, при распаде трития.
И тут тритий?! Да не, если бы это был единственный вариант, Гелий 3 не стоил бы 65 тыс. рублей за литр. Есть еще вариант бомбардировать литий альфа-частицами.
Но в любом случае, дело достаточно затратное и сложное, и это речь идет о килограммах, не говоря уж о промышленном производстве.
Где взять Гелий-3?
Наши сейчас запускают спутник для картографирования лунной поверхности.
Строится космический корабль для полета на орбиту Земли. Этим занимаются многие — и мы в том числе. Но наши инженеры, хоть и отстают по срокам запуска испытаний, однако планируют отправлять корабль подальше земной орбиты — на Луну! Планируется постройка лунной базы. Какого рожна нам нужно от этого куска камня?
Дело в том, что в лунном грунте накоплено 10 миллионов тонн Гелия-3 — такого нужного и полезного вещества.
А вы думали, мы на луну ради любопытства летим? Мы же не тщеславные американцы. Они замутили пиар-компанию на полете на Луну, а мы замутим Гелий-3 в промышленных масштабах. У нас даже план есть.
План
До 2025 года мы отправим к спутнику Земли 4 межпланетных станции. Их задачами будет разведка полярного реголита с водяным льдом, а также поиск в районе Южного полюса хорошего местечка для базы.
До начала 30-х годов на Луну отправятся пилотируемые экспедиции без высадки на поверхность. В 30-40-х годах будут произведены первые посадки на поверхность Луны и первые закладки будущей инфраструктуры базы.
К 2050 году базе быть!
А там мы увидим и первые автоматические машины, оставившие свои следы на лунном грунте. Роботы-бульдозеры будут формировать из сырья новые лунные горы, а обогатительный комбинат будет трудиться круглые сутки, вырабатывая Гелий-3. И только старты межпланетных грузовых кораблей будут нарушать молчаливую рутинность этих работ.
А на земле мы будем все так же ругать правительство в комментах, совсем не задумываясь о том, какой путь проходит электричество от термоядерного реактора до нашего гаджета.
Станет ли Россия лидером в термоядерных технологиях?
26 Октября, 10:07
Пришло время поднять тему термоядерных реакторов.
Обычная атомная бомба работает на реакции распада. Представьте: берем тяжелые атомные ядра, доводим массу вещества до критического значении, и хлоп – ядра начинают делиться на легкие, испуская море энергии.
Если нам удается контролировать процесс деления ядер – получаем ядерный реактор, море энергии, конвертируемой в электричество, свет в домах. Но стоит только зазеваться, и у нас вместо праздника жизни может появиться зона отчуждения с радиоактивными осадками.
Отсюда появилась мысль: а что если, наоборот, соединять легкие атомные ядра в тяжелые – энергии еще больше, а всякой вредной радиации и смертельно опасных последствий, оплошностей – меньше?
Но вот беда, ядра не хотят просто так соединяться, даже более того, они отталкиваются – противный «кулоновский барьер» мешает. Но, как мы знаем, на каждую силу, есть другая сила – если ядра разогнать посильнее, они барьер преодолевают, и получаем тяжелое ядро и море энергии. Вот так это выглядит схематично, на примере реакции дейтерий-тритий:

Фото: Интернет
Проблема разгона решается простым нагреванием, правда, при этом вещество превращается в плазму. Кстати, поэтому и название такое – термоядерная реакция.
Когда началось?
Как известно, люди с большим усердием разрушают, нежели строят, поэтому термоядерная реакция впервые была применена именно в бомбе – сначала США взорвали свою водородную бомбу в 1952 году, а затем и мы подтянулись в 1953. Взрыв произвел впечатление. В принципе, мощность этих апокалипсических игрушек ничем не ограничивается, так что если поднапрячься, можно отправить к праотцам не только неприятеля со всей страной, но и себя, и Матушку землю за компанию.

Фото: Интернет
Кстати, бомба называется водородной, потому что использующийся в реакции синтеза дейтерий – это изотоп водорода.
Так в чем же дело?
Есть проблема – уж очень горяча плазма. Нет такого материала для котелка, в котором бы можно было варить ядерный синтез. Однако нет и такой проблемы, которую бы не решили советские инженеры во славу страны и лично товарища Сталина.
Первые схемы были начерчены в 1950 году, а в 1954 году уже был построен первый «токамак» (тороидальная камера с магнитными катушками). Суть изобретения в том, чтобы держать плазму внутри электромагнитного поля.
Однако прошло долгих 14 лет, прежде чем советским профессорам удалось разогреть плазму до 10 млн. градусов. Тогда это дело зафиксировали английские ученые. Они до последнего не верили, что это удалось. И даже прихватили свою аппаратуру, чтобы замерить. Поверить пришлось.
К слову, «токамак» – это непереводимая аббревиатура, так эти реакторы называют по всему миру. Одно из русских слов, дарованное миру.

Фото: Интернет
Есть и другие варианты конструкции термоядерных реакторов, например Стелларатор или, опять же, наш Торсатрон, но до развития компьютерных технологий у них было слишком много слабых сторон. Но и сейчас Токомаки все же эффективнее и привычнее.
Токомаков по всему миру понастроили 300 штук, чтобы изучать и еще раз изучать термоядерный синтез, лелея надежду однажды получить с него электричество.
ITER
International Thermonuclear Experimental Reactor, по-русски ИТЭР, – это проект международного экспериментального термоядерного реактора.
Он должен исполнять роль стенда, на котором будет доказана коммерческая эффективность использования термоядерного синтеза с целью получения электроэнергии.
История берет начало в СССР. В 1985 году мы предложили миру совместный проект – Токомак нового поколения. Начиналось его проектирование учеными четырех стран: СССР, США, ЕС, Японии. Строительство же началось уже совсем в другом составе: Россия привела в проект Казахстан, Индию, Штаты (которые то покидали проект, то возвращались снова), пришли канадцы, китайцы, южные корейцы…
В 2010 году начали рыть котлован на Юге Франции, в исследовательском центре Кадараш.
Сейчас вовсю идет строительство. Планировали закончить к 2016 году, но сроки откладываются, стоимость проекта возрастает, обещают закончить сборку к 2019 году, а в 2020 году начать экспериментировать с плазмой.
Стоит понимать, что строительство ИТЭР – это сложный технологически проект, который ни одна компания в мире не готова выполнить в одиночку.
Каждая страна участвует не деньгами напрямую, а производя детали реактора у себя и доставляя для сборки во Францию. Сейчас это 7 стран – самых технологичных, способных нести на себе бремя тяжелых разработок и производства: ЕС, Китай, Индия, Япония, Южная Корея, США и Россия.
Это не айфон собрать. Это технологии будущего.

Фото: Интернет
И очень приятно, когда твоя страна входит в такую семерку.
Стоит понимать, что ИТЭР – это просто новый токамак для экспериментов. Его главная задача заключается в том, чтобы достигнуть средней мощности в 500 МВт с продолжительностью импульса более 400 с.
Проще говоря, это машина, которая строится, чтобы поработать 7 минут и вырубиться. Она даже не должна никуда ехать. Вся тепловая энергия, выработанная ИТЭР, пойдет не на производство электроэнергии, а рассеется в атмосфере.
Но, как любят повторять американцы, «это маленький шаг для человека, большой шаг для…».
DEMO
DEMOnstration Power Plant – это следующий этап. Его разработают на основе экспериментов, проведенных на ИТЭР. У него и задачи уже соответствующие – 2 ГВт непрерывной генерации.
Много это или мало?
Ну, скажем, в мире действуют 388 энергетических ядерных реакторов общей мощностью 333 ГВт, а это значит, что на каждый в среднем приходится по 0,858 ГВт.
2 ГВт для демонстрационной версии. Неплохо, да? Кстати, первый Советский ядерный реактор давал всего 20 Вт.
К DEMO будет впервые прикручен электрогенератор, то есть это будет полноценная термоядерная электростанция.
Инженерный проект планируют сдать в 2024 году. Строить будут до 2033 года, а там запустят, и мы посмотрим на результат.
Конвейер
После того как DEMO заработает и докажет свою эффективность, будет разработано и запущено производство серийных термоядерных реакторов. Электричество, производимое ими, будет, скорее всего, находиться в верхнем ценовом диапазоне. Однако и обычные виды топлива к тому времени могут взлететь в цене, или человечество поумнеет и решит, что сжигать полезные ископаемые глупо и вредно. Может, такое случится? На то, чтобы поумнеть, у человечества есть 20-25 лет.
Игнитор
Есть и другие проекты, например итальяно-русский IGNITOR.
Работу над ним начал профессор Бруно Копи в далеком 1977 году. IGNITOR легче и дешевле ИТЭР, способен, как планируется, вырабатывать 90-100 МВт.
По сути, сейчас Игнитор должен строиться в Троицке, на базе советского токамака ТРИНИТИ. Срок сдачи – 2016-2017 год. Работают над проектом наш РосАтом и итальянцы. Общая стоимость проекта составляет 250 миллионов евро, Италия выделила 140 миллионов евро. Остальное, видимо, мы.
В итоге
Термоядерные электростанции – это неотвратимо приближающееся будущее. Будущее, которое ждет молодое поколение в их зрелости. Ждать осталось не так долго.
Однако термоядерный реактор (хоть тот же ITER) – это не только новые мощности и прорыв в науке, это еще и прорыв в международных отношениях. Мы вместе способны на очень многое, если не устраивать войн, не растить террористов и не бороться за исключительность. Но, как показывает практика, международные проекты – это очень и очень сложно. Сроки постройки ИТЭР откладываются в том числе и потому, что сроков исполнения по изготовлению деталей не выдерживают некоторые участники, например ЕС.
Поэтому нужно нарабатывать опыт международного сотрудничества.
Главное же, что видится мне как гражданину России, – мы сейчас лидеры в ядерных технологиях, а благодаря участию в проекте ИТЭР будем лидерами в термоядерных технологиях в будущем.
|